
ADITYA ENGINEERING COLLEGE (A)

ADVANCED  DATA 
STRUCTURES



Aditya Engineering College  (A)

Advanced Data Structures

AVL Trees

Before discussing about AVL Tree, we need to discuss about 

drawbacks of BST.

If BST is not balanced, then the time complexity of all 

operation  of BST is O(n) in worst case 
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• AVL tree is named after its inventors G M Adelson, Velsky and E M Landis in 1962.

• AVL tree is a self-balancing binary search tree in which the heights of the two sub-trees of a 

node may differ by at most one. Because of this property, AVL tree is also known as a 

height-balanced tree.

• The advantage of using an AVL tree is that it takes O(log n) time to perform search, 

insertion and deletion operations in average case as well as worst case i.e  O(log n).

• The structure of an AVL tree is same as that of a binary search tree but with a little 

difference. In its structure, it stores an additional variable called the BalanceFactor. 

AVL Trees Introduction
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AVL Trees Balance Factor
• The balance factor of a node is calculated by subtracting the height of its right sub-tree 

from the height of its left sub-tree. 

Balance factor = Height (left sub-tree) – Height (right sub-tree)

• A binary search tree in which every node has a balance factor of -1, 0 or 1 is said to be 
height balanced. A node with any other balance factor is considered to be unbalanced and 
requires rebalancing.

• If the balance factor of a node is 1, then it means that the left sub-tree of the tree is one 
level higher than that of the right sub-tree. Such a tree is called Left-heavy tree. 

• If the balance factor of a node is 0, then it means that the height of the left sub-tree is 
equal to the height of its right sub-tree. 

• If the balance factor of a node is -1, then it means that the left sub-tree of the tree is one 
level lower than that of the right sub-tree. Such a tree is called Right-heavy tree. 
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AVL Trees Balance Factor
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• Searching in an AVL tree is performed exactly the same 

way as it is performed in a binary search tree. 

• Because of the height-balancing of the tree, the search 

operation takes O(log n) time to complete. 

• Since the operation does not modify the structure of the 

tree, no special provisions need to be taken. 

Searching for a Node in an AVL Tree
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• Since an AVL tree is also a variant of binary search tree, insertion is also 

done in the same way as it is done in case of a binary search tree. 

• Like in binary search tree, the new node is always inserted as the leaf 

node. But the step of insertion is usually followed by an additional step 

of rotation.

• Rotation is done to restore the balance of the tree. However, if 

insertion of the new node does not disturb the balance factor, that is, if 

the balance factor of every node is still -1, 0 or 1, then rotations are not 

needed. 

Inserting a Node in an AVL Tree
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Inserting a Node in an AVL Tree
• During insertion, the new node is inserted as the leaf node, so it will always have 

balance factor equal to zero. 

• The nodes whose balance factors will change are those which lie on the path between 

the root of the tree and the newly inserted node. 

• The possible changes which may take place in any node on the path are as follows:

➢ Initially the node was either left or right heavy and after insertion has become 

balanced.

➢ Initially the node was balanced and after insertion has become either left or right 

heavy.

➢ Initially the node was heavy (either left or right) and the new node has been 

inserted in the heavy sub-tree thereby creating an unbalanced sub-tree. Such a 

node is said to be a critical node.
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Rotations to Balance AVL Trees
• To perform rotation, our first work is to find the critical node. Critical node is the nearest 

ancestor node on the path from the root to the inserted node whose balance factor is 

neither -1, 0 nor 1. 

• The second task is to determine which type of rotation has to be done. 

• There are four types of rebalancing rotations and their application depends on the 

position of the inserted node with reference to the critical node. 

➢ LL rotation: the new node is inserted in the left sub-tree of the left sub-tree of the critical 

node

➢RR rotation: the new node is inserted in the right sub-tree of the right sub-tree of the 

critical node

➢ LR rotation: the new node is inserted in the right sub-tree of the left sub-tree of the 

critical node

➢RL rotation: the new node is inserted in the left sub-tree of the right sub-tree of the 

critical node
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Rotations to Balance AVL Trees
• LL & RR rotations are called single rotations

• LR & RL rotations are called double rotations

• LR Rotation includes 2 steps

1)Perform RR on child subtree

2)Perform LL on the entire tree

• RL Rotation includes 2 steps

1)Perform LL on child subtree

2)Perform RR on the entire tree
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LL Rotation
Let the grandparent (critical code) be represented as gp. Its child is parent (par)
and its child is represented as ch in the path of the inserted node to root.

[h is the height of the subtrees T1, T2,T3,T4]
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LL Rotation
Example: Insert 20 into the AVL tree50
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After  insertion the tree is 
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(gp) is 40, par is 30 
and ch=20.  
Perform LL rotation
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LR Rotation

gp

par

ch

T4  (h)

T1 (h)

T2 (h)
T 3 (h)

LR

par

ch

gp

T 1 (h) T 2 (h) T 3 (h) T 4 (h)

2

L

-1

00

0

0

R

Consider ch moving in between par and gp on top. Therefore par is left and gp is right 
child.
LR rotation includes 2 steps
1) Perform RR on child subtree
2) Perform LL on entire tree
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RL Rotation
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Example:  Perform LR rotation by inserting 37
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Example: Perform RL by inserting 85 into the tree
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gp=80

par=90
ch=85

Perform RL 
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Resultant tree is AVL Tree0
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Example: Construct AVL tree with values 30,35,38, 20, 10, 25, 22, 28, 24, 29, 40, 50

Solution
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Construct AVL Tree for given values
12,14,15,17,19,22,23,27
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Construct AVL Tree for given values
99,76,66,54,34,32,22,20,18 and 10
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Construct AVL Tree for given values
67, 54, 45, 43, 40, 33, 31, 25 and 20
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Construct AVL Tree for given values
50,75,65,85,80,25,60,55,90 and 88
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Construct AVL Tree for given values
99,50,70,25,40,60 ,30
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Construct AVL Tree for given values
30,10,15,20,35,45,12,13,14,11 and 90
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AVL Tree Deletion Operation
• Deleting a node from an AVL tree is similar to that in a binary search tree. 

Deletion may disturb the balance factor of an AVL tree and therefore the 
tree needs to be rebalanced in order to maintain the AVL tree. For this 
purpose, we need to perform rotations. The two types of rotations are L 
rotation and R rotation. Here, we will discuss R rotations. L rotations are 

the mirror images of them.

• If the node which is to be deleted is present in the left sub-tree of the 
critical node, then L rotation needs to be applied else if, the node which is 
to be deleted is present in the right sub-tree of the critical node, the R 
rotation will be applied.

• Let us consider that, A is the critical node and B is the root node of its left 
sub-tree. If node X, present in the right sub-tree of A, is to be deleted, 
then there can be three different situations:
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AVL Tree Deletion Operation
R0 rotation (Node B has balance factor 0 )
If the node B has 0 balance factor, and the balance factor of node A disturbed upon deleting 
the node X, then the tree will be rebalanced by rotating tree using R0 rotation.
The critical node A is moved to its right and the node B becomes the root of the tree with T1 
as its left sub-tree. The sub-trees T2 and T3 becomes the left and right sub-tree of the node 
A. the process involved in R0 rotation is shown in the following image.
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AVL Tree Deletion Operation
Example:
Delete the node 30 from the AVL tree shown in the following image.
In this case, the node B has balance factor 0, therefore the tree will be rotated by using R0 
rotation as shown in the following image. The node B(10) becomes the root, while the node 
A is moved to its right. The right child of node B will now become the left child of node A.
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AVL Tree Deletion Operation
R1 Rotation (Node B has balance factor 1)
R1 Rotation is to be performed if the balance factor of Node B is 1. In R1 rotation, the 
critical node A is moved to its right having sub-trees T2 and T3 as its left and right child 
respectively. T1 is to be placed as the left sub-tree of the node B.
The process involved in R1 rotation is shown in the following image.
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AVL Tree Deletion Operation
Example:
Deleting 55 from the AVL Tree disturbs the balance factor of the node 50 i.e. node A which 
becomes the critical node. This is the condition of R1 rotation in which, the node A will be 
moved to its right (shown in the image below). The right of B is now become the left of A (i.e. 
45).
The process involved in the solution is shown in the following image.
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AVL Tree Deletion Operation
R-1 Rotation (Node B has balance factor -1)
R-1 rotation is to be performed if the node B has balance factor -1. This case is treated in 
the same way as LR rotation. In this case, the node C, which is the right child of node B, 
becomes the root node of the tree with B and A as its left and right children respectively.
The sub-trees T1, T2 becomes the left and right sub-trees of B whereas, T3, T4 become the 
left and right sub-trees of A.
The process involved in R-1 rotation is shown in the following image.
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AVL Tree Deletion Operation
Example:
in this case, node B has balance factor -1. Deleting the node 60, disturbs the balance factor 
of the node 50 therefore, it needs to be R-1 rotated. The node C i.e. 45 becomes the root of 
the tree with the node B(40) and A(50) as its left and right child.
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Thank You
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