
ADITYA ENGINEERING COLLEGE (A)

ADVANCED DATA
STRUCTURES

Aditya Engineering College (A)

Advanced Data Structures

AVL Trees

Before discussing about AVL Tree, we need to discuss about

drawbacks of BST.

If BST is not balanced, then the time complexity of all

operation of BST is O(n) in worst case

Aditya Engineering College (A)

Advanced Data Structures

• AVL tree is named after its inventors G M Adelson, Velsky and E M Landis in 1962.

• AVL tree is a self-balancing binary search tree in which the heights of the two sub-trees of a

node may differ by at most one. Because of this property, AVL tree is also known as a

height-balanced tree.

• The advantage of using an AVL tree is that it takes O(log n) time to perform search,

insertion and deletion operations in average case as well as worst case i.e O(log n).

• The structure of an AVL tree is same as that of a binary search tree but with a little

difference. In its structure, it stores an additional variable called the BalanceFactor.

AVL Trees Introduction

Aditya Engineering College (A)

Advanced Data Structures

AVL Trees Balance Factor
• The balance factor of a node is calculated by subtracting the height of its right sub-tree

from the height of its left sub-tree.

Balance factor = Height (left sub-tree) – Height (right sub-tree)

• A binary search tree in which every node has a balance factor of -1, 0 or 1 is said to be
height balanced. A node with any other balance factor is considered to be unbalanced and
requires rebalancing.

• If the balance factor of a node is 1, then it means that the left sub-tree of the tree is one
level higher than that of the right sub-tree. Such a tree is called Left-heavy tree.

• If the balance factor of a node is 0, then it means that the height of the left sub-tree is
equal to the height of its right sub-tree.

• If the balance factor of a node is -1, then it means that the left sub-tree of the tree is one
level lower than that of the right sub-tree. Such a tree is called Right-heavy tree.

Aditya Engineering College (A)

Advanced Data Structures

45

6336

27

18

39
54 72

45

6336

27

70

39 54
72

45

63

27 39 54 72

36

Left heavy AVL tree

Right heavy AVL tree

Perfect Balanced AVL tree
1

1

1

0

0
0 0

0

0

00

0 0 0 0

-1

-1

1

0

0 0
0

0

AVL Trees Balance Factor

Aditya Engineering College (A)

Advanced Data Structures

AVL Trees Balance Factor

--

--

Aditya Engineering College (A)

Advanced Data Structures

• Searching in an AVL tree is performed exactly the same

way as it is performed in a binary search tree.

• Because of the height-balancing of the tree, the search

operation takes O(log n) time to complete.

• Since the operation does not modify the structure of the

tree, no special provisions need to be taken.

Searching for a Node in an AVL Tree

Aditya Engineering College (A)

Advanced Data Structures

• Since an AVL tree is also a variant of binary search tree, insertion is also

done in the same way as it is done in case of a binary search tree.

• Like in binary search tree, the new node is always inserted as the leaf

node. But the step of insertion is usually followed by an additional step

of rotation.

• Rotation is done to restore the balance of the tree. However, if

insertion of the new node does not disturb the balance factor, that is, if

the balance factor of every node is still -1, 0 or 1, then rotations are not

needed.

Inserting a Node in an AVL Tree

Aditya Engineering College (A)

Advanced Data Structures

Inserting a Node in an AVL Tree
• During insertion, the new node is inserted as the leaf node, so it will always have

balance factor equal to zero.

• The nodes whose balance factors will change are those which lie on the path between

the root of the tree and the newly inserted node.

• The possible changes which may take place in any node on the path are as follows:

➢ Initially the node was either left or right heavy and after insertion has become

balanced.

➢ Initially the node was balanced and after insertion has become either left or right

heavy.

➢ Initially the node was heavy (either left or right) and the new node has been

inserted in the heavy sub-tree thereby creating an unbalanced sub-tree. Such a

node is said to be a critical node.

Aditya Engineering College (A)

Advanced Data Structures

Rotations to Balance AVL Trees
• To perform rotation, our first work is to find the critical node. Critical node is the nearest

ancestor node on the path from the root to the inserted node whose balance factor is

neither -1, 0 nor 1.

• The second task is to determine which type of rotation has to be done.

• There are four types of rebalancing rotations and their application depends on the

position of the inserted node with reference to the critical node.

➢ LL rotation: the new node is inserted in the left sub-tree of the left sub-tree of the critical

node

➢RR rotation: the new node is inserted in the right sub-tree of the right sub-tree of the

critical node

➢ LR rotation: the new node is inserted in the right sub-tree of the left sub-tree of the

critical node

➢RL rotation: the new node is inserted in the left sub-tree of the right sub-tree of the

critical node

Aditya Engineering College (A)

Advanced Data Structures

Rotations to Balance AVL Trees
• LL & RR rotations are called single rotations

• LR & RL rotations are called double rotations

• LR Rotation includes 2 steps

1)Perform RR on child subtree

2)Perform LL on the entire tree

• RL Rotation includes 2 steps

1)Perform LL on child subtree

2)Perform RR on the entire tree

Aditya Engineering College (A)

Advanced Data Structures

LL Rotation
Let the grandparent (critical code) be represented as gp. Its child is parent (par)
and its child is represented as ch in the path of the inserted node to root.

[h is the height of the subtrees T1, T2,T3,T4]

gp

par

ch

T4 (h)

T3 (h)

T2 (h)T1 (h)

(h+2 - h)

L

1

0

L

LL
par

ch
gp

T1 (h)
T2 (h) T3 (h) T4 (h)

00

0

LL Rotation tilt the tree towards right

2

Aditya Engineering College (A)

Advanced Data Structures

LL Rotation
Example: Insert 20 into the AVL tree50

40
70

30

After insertion the tree is

50

30

40 70

20

2

2

1

0

0

1

1 0

0

The critical node
(gp) is 40, par is 30
and ch=20.
Perform LL rotation

The final AVL tree after LL Rotation is

50

30 70

20 40

1

0

0

0

0

(The tree is Avl balanced)

Aditya Engineering College (A)

Advanced Data Structures

gp

par

ch

T1 (h)

T2 (h)

T 3 (h) T4 (h)

T1 (h)

-2

-1
R

R

0

RR

par

gp
ch

T1 (h) T2 (h) T3 (h)
T4 (h)

0

0
0

RR Rotation

Aditya Engineering College (A)

Advanced Data Structures

LR Rotation

gp

par

ch

T4 (h)

T1 (h)

T2 (h)
T 3 (h)

LR

par

ch

gp

T 1 (h) T 2 (h) T 3 (h) T 4 (h)

2

L

-1

00

0

0

R

Consider ch moving in between par and gp on top. Therefore par is left and gp is right
child.
LR rotation includes 2 steps
1) Perform RR on child subtree
2) Perform LL on entire tree

Aditya Engineering College (A)

Advanced Data Structures

chT 1(h)

T 2 (h) T 3 (h)

gp

par
T 4(h)

par T 3

T 1 T 2

gp

ch
T 4

a b

Perform LL on b ch

par gp

T 1 T 2 T 3 T 4

2

-1

R

R

0

RR on child subtree

L

L
LL

Aditya Engineering College (A)

Advanced Data Structures

RL Rotation

gp

par

ch

T 1 (h)

T4 (h)

T 2 (h) T 3 (h)

-2

R

1

L

0
ch

gp par

T 1 (h) T 2 (h) T 3 (h) T 4 (h)

RL includes performing LL on child subtree & RR on entire tree

0

0 0

RL

Aditya Engineering College (A)

Advanced Data Structures

ch

gp par

T1 T2 T3 T4

RR

LL

Aditya Engineering College (A)

Advanced Data Structures

Example: Perform LR rotation by inserting 37

45

36 63

27 39

45

36 63

27 39

37

Imbalance at 45

∴ gp=45
par=36
ch=39
Now Perform LR

20

0

0

0
0

1

0

1

0

-1

Insert 37

Aditya Engineering College (A)

Advanced Data Structures

39

36 45

27 37 63

Example: Perform RL by inserting 85 into the tree

60

30 80

60

30 80

90

85

-1

0

Insert 85

-2

-2

1

0

0

R

L

0

0 -1

0 0 0

90

-1

LR

0

Aditya Engineering College (A)

Advanced Data Structures

gp=80

par=90
ch=85

Perform RL

60

30 85

80 90

Resultant tree is AVL Tree0

00

0

-1

Aditya Engineering College (A)

Advanced Data Structures

Example: Construct AVL tree with values 30,35,38, 20, 10, 25, 22, 28, 24, 29, 40, 50

Solution

30 30

35

30

35

38

35

30 38

35

30 38

20

insert 35 insert 38 Insert 20
RR -2

0

1

0
0

01

0

0-10

-10

35

30 38

20

10

35

20 38

10 30

Insert 10 LL

R

R

2

2

L

L

0 1

0 0

0 0

Insert
30

Aditya Engineering College (A)

Advanced Data Structures

35

20 38

10 30

25

30

20 35

10 25 38

insert 25

insert 22
LR

30

20 35

10 25

22

30

20 35

10 25

22
28

38

insert 28

1
0

-1

2

0

0

0

0

-1
0

1 0

0

-1 -1

0

1

-1

0

-1

0
0

0

0

1

1
38

0

Aditya Engineering College (A)

Advanced Data Structures

 Insert 24 2 1

 -2 -1 RL 0 -1`

 R 1

 0 2 0 1 0

 -1 0 0

 0 0

0 0

 Insert 29 2 0

 0

 L -1 LR 1

 -1 R 0 -1

 1 -1 1 0 -1

 -1 0

 0 0 0 0

 0

38

30

22

20

10

25

28

29

38

35

24

25

22

20

10

30

35

38

28

29

24

30

20 35

25

22

3

28

24

38
10

35

30

22

20

25

10
24 28

Aditya Engineering College (A)

Advanced Data Structures

25

30

35

28

24

10

20

22

4029

38

-1

-1

-2

-1

0

1

0

-1

0

1

0

25

30

38

40

22

20

10

24 28

29 35

RR
1

1

0

0 0

0
-1

0

0

0

25

22

20

10

30

38

40

50

29

35

24

RR

Insert(50)

25

22

20

10

30

38

40

50

28

29
35

24

-1

-1

-1

-1

0

1

1

0

0
-1

0

R

R

0

0

Insert 40

Aditya Engineering College (A)

Advanced Data Structures

Aditya Engineering College (A)

Advanced Data Structures

Construct AVL Tree for given values
12,14,15,17,19,22,23,27

Aditya Engineering College (A)

Advanced Data Structures

Construct AVL Tree for given values
99,76,66,54,34,32,22,20,18 and 10

Aditya Engineering College (A)

Advanced Data Structures

Construct AVL Tree for given values
67, 54, 45, 43, 40, 33, 31, 25 and 20

Aditya Engineering College (A)

Advanced Data Structures

Construct AVL Tree for given values
50,75,65,85,80,25,60,55,90 and 88

Aditya Engineering College (A)

Advanced Data Structures

Construct AVL Tree for given values
99,50,70,25,40,60 ,30

Aditya Engineering College (A)

Advanced Data Structures

Construct AVL Tree for given values
30,10,15,20,35,45,12,13,14,11 and 90

Aditya Engineering College (A)

Advanced Data Structures

AVL Tree Deletion Operation
• Deleting a node from an AVL tree is similar to that in a binary search tree.

Deletion may disturb the balance factor of an AVL tree and therefore the
tree needs to be rebalanced in order to maintain the AVL tree. For this
purpose, we need to perform rotations. The two types of rotations are L
rotation and R rotation. Here, we will discuss R rotations. L rotations are

the mirror images of them.

• If the node which is to be deleted is present in the left sub-tree of the
critical node, then L rotation needs to be applied else if, the node which is
to be deleted is present in the right sub-tree of the critical node, the R
rotation will be applied.

• Let us consider that, A is the critical node and B is the root node of its left
sub-tree. If node X, present in the right sub-tree of A, is to be deleted,
then there can be three different situations:

Aditya Engineering College (A)

Advanced Data Structures

AVL Tree Deletion Operation
R0 rotation (Node B has balance factor 0)
If the node B has 0 balance factor, and the balance factor of node A disturbed upon deleting
the node X, then the tree will be rebalanced by rotating tree using R0 rotation.
The critical node A is moved to its right and the node B becomes the root of the tree with T1
as its left sub-tree. The sub-trees T2 and T3 becomes the left and right sub-tree of the node
A. the process involved in R0 rotation is shown in the following image.

Aditya Engineering College (A)

Advanced Data Structures

AVL Tree Deletion Operation
Example:
Delete the node 30 from the AVL tree shown in the following image.
In this case, the node B has balance factor 0, therefore the tree will be rotated by using R0
rotation as shown in the following image. The node B(10) becomes the root, while the node
A is moved to its right. The right child of node B will now become the left child of node A.

Aditya Engineering College (A)

Advanced Data Structures

AVL Tree Deletion Operation
R1 Rotation (Node B has balance factor 1)
R1 Rotation is to be performed if the balance factor of Node B is 1. In R1 rotation, the
critical node A is moved to its right having sub-trees T2 and T3 as its left and right child
respectively. T1 is to be placed as the left sub-tree of the node B.
The process involved in R1 rotation is shown in the following image.

Aditya Engineering College (A)

Advanced Data Structures

AVL Tree Deletion Operation
Example:
Deleting 55 from the AVL Tree disturbs the balance factor of the node 50 i.e. node A which
becomes the critical node. This is the condition of R1 rotation in which, the node A will be
moved to its right (shown in the image below). The right of B is now become the left of A (i.e.
45).
The process involved in the solution is shown in the following image.

Aditya Engineering College (A)

Advanced Data Structures

AVL Tree Deletion Operation
R-1 Rotation (Node B has balance factor -1)
R-1 rotation is to be performed if the node B has balance factor -1. This case is treated in
the same way as LR rotation. In this case, the node C, which is the right child of node B,
becomes the root node of the tree with B and A as its left and right children respectively.
The sub-trees T1, T2 becomes the left and right sub-trees of B whereas, T3, T4 become the
left and right sub-trees of A.
The process involved in R-1 rotation is shown in the following image.

Aditya Engineering College (A)

Advanced Data Structures

AVL Tree Deletion Operation
Example:
in this case, node B has balance factor -1. Deleting the node 60, disturbs the balance factor
of the node 50 therefore, it needs to be R-1 rotated. The node C i.e. 45 becomes the root of
the tree with the node B(40) and A(50) as its left and right child.

Aditya Engineering College (A)

Advanced Data Structures

Thank You

	Slide 1: ADVANCED DATA STRUCTURES
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

